

Fig. 12
Fig. 12 shows the graph of a cubic curve. It intersects the axes at $(-5,0),(-2,0),(1.5,0)$ and $(0,-30)$.
(i) Use the intersections with both axes to express the equation of the curve in a factorised form.
(ii) Hence show that the equation of the curve may be written as $y=2 x^{3}+11 x^{2}-x-30$.
(iii) Draw the line $y=5 x+10$ accurately on the graph. The curve and this line intersect at $(-2,0)$; find graphically the x-coordinates of the other points of intersection.
(iv) Show algebraically that the x-coordinates of the other points of intersection satisfy the equation

$$
2 x^{2}+7 x-20=0 .
$$

Hence find the exact values of the x-coordinates of the other points of intersection.

Fig. 12
Fig. 12 shows the graph of $y=\frac{1}{x-2}$.
(i) Draw accurately the graph of $y=2 x+3$ on the copy of Fig. 12 and use it to estimate the coordinates of the points of intersection of $y=\frac{1}{x-2}$ and $y=2 x+3$.
(ii) Show algebraically that the x-coordinates of the points of intersection of $y=\frac{1}{x-2}$ and $y=2 x+3$ satisfy the equation $2 x^{2}-x-7=0$. Hence find the exact values of the x-coordinates of the points of intersection.
(iii) Find the quadratic equation satisfied by the x-coordinates of the points of intersection of $y=\frac{1}{x-2}$ and $y=-x+k$. Hence find the exact values of k for which $y=-x+k$ is a tangent to $y=\frac{1}{x-2}$. [4]

Fig. 12
Fig. 12 shows the graph of $y=\frac{1}{x-3}$.
(i) Draw accurately, on the copy of Fig. 12, the graph of $y=x^{2}-4 x+1$ for $-1 \leqslant x \leqslant 5$. Use your graph to estimate the coordinates of the intersections of $y=\frac{1}{x-3}$ and $y=x^{2}-4 x+1$.
(ii) Show algebraically that, where the curves intersect, $x^{3}-7 x^{2}+13 x-4=0$.
(iii) Use the fact that $x=4$ is a root of $x^{3}-7 x^{2}+13 x-4=0$ to find a quadratic factor of $x^{3}-7 x^{2}+13 x-4$. Hence find the exact values of the other two roots of this equation.

4 (i) Find algebraically the coordinates of the points of intersection of the curve $y=4 x^{2}+24 x+31$ and the line $x+y=10$.
(ii) Express $4 x^{2}+24 x+31$ in the form $a(x+b)^{2}+c$.
(iii) For the curve $y=4 x^{2}+24 x+31$,
(A) write down the equation of the line of symmetry,
(B) write down the minimum y-value on the curve.

5 (i) Solve, by factorising, the equation $2 x^{2}-x-3=0$.
(ii) Sketch the graph of $y=2 x^{2}-x-3$.
(iii) Show that the equation $x^{2}-5 x+10=0$ has no real roots.
(iv) Find the x-coordinates of the points of intersection of the graphs of $y=2 x^{2}-x-3$ and $y=x^{2}-5 x+10$. Give your answer in the form $a \pm \sqrt{b}$.

6 Answer the whole of this question on the insert provided.

The insert shows the graph of $y=\frac{1}{x}, x \neq 0$.
(i) Use the graph to find approximate roots of the equation $\frac{1}{x}=2 x+3$, showing your method clearly.
(ii) Rearrange the equation $\frac{1}{x}=2 x+3$ to form a quadratic equation. Solve the resulting equation, leaving your answers in the form $\frac{p \pm \sqrt{q}}{r}$.
(iii) Draw the graph of $y=\frac{1}{x}+2, x \neq 0$, on the grid used for part (i).
(iv) Write down the values of x which satisfy the equation $\frac{1}{x}+2=2 x+3$.

